Greenlist Bulletin
From the Toxics Use Reduction Institute
at the University of Massachusetts Lowell

March 22, 2013

In This Issue
DNA: a novel, green, natural flame retardant and suppressant for cotton
IC2 Guidance for Alternatives Assessment
Removing toxic chemicals with Porous Organic Polymers
Selective Chlorination of Natural Organic Matter: Identification of Previously Unknown Disinfection Byproducts
Paraffin Encapsulated in Beach Sand Material as a New Way to Store Heat from the Sun
Join Our Mailing List!
Quick Links


This is the weekly bulletin of the TURI Library at the University of Massachusetts Lowell. Greenlist Bulletin provideTURI logos previews of recent publications and websites relevant to reducing the use of toxic chemicals by industries, businesses, communities, individuals and government. You are welcome to send a message to mary@turi.org if you would like more information on any of the articles listed here, or if this email is not displaying properly.

 

DNA: a novel, green, natural flame retardant and suppressant for cotton
Source: Journal of Materials Chemistry A, February 12, 2013
Authors: Jenny Alongi, Riccardo Andrea Carletto, Alessandro Di Blasio, Federico Carosio, Francesca Bosco and Giulio Malucelli

For the first time, deoxyribonucleic acid (DNA) from herring sperm has been employed as a novel flame retardant system for enhancing the thermal stability and flame retardant properties of cotton fabrics. Indeed, DNA could be considered an intrinsically intumescent flame retardant as it contains the three main components that are usually present in an intumescent formulation, namely: the phosphate groups, able to produce phosphoric acid, the deoxyribose units acting as a carbon source and blowing agents (upon heating a (poly)saccharide dehydrates forming char and releasing water) and the nitrogen-containing bases (guanine, adenine, thymine, and cytosine) that may release ammonia. The flammability tests in horizontal configuration have clearly shown that after two applications of a methane flame for 3 s, the DNA-treated cotton fabrics do not burn at all. Furthermore, when exposed to an irradiative heat flux of 35 kW m−2, no ignition has been observed. Finally, an LOI value of 28% has been achieved for the treated fabrics as opposed to 18% of the untreated fabric.

Read more...

Read more about the study in Popular Science.

 

IC2 Guidance for Alternatives Assessment
Source: Northeast Waste Management Officials' Association, March 22, 2013

The Interstate Chemicals Clearinghouse (IC2) and participating states are pleased to announce that a draft version of the Guidance for Alternatives Assessment and Risk Reduction is available for public review and comment. The document will be available for 45 days and the comment period will end on Friday, May 3, 2013.

Read more...

Access full draft of guidance here.

 

Removing toxic chemicals with Porous Organic Polymers
Source: Royal Society of Chemistry, March 13, 2013
Author: Jennifer Newton

The filters used in gas masks, which give protection against toxic industrial chemicals, are often large and cumbersome, being made from activated carbon that is impregnated with metal salts. In a search for alternatives, SonBinh Nguyen  and colleagues at Northwestern University, Evanston, Illinois, have joined forces with scientists at the Edgewood Chemical Biological Center, Maryland, to investigate a series of porous organic polymers (POPs) bearing metal-catecholate groups. By changing the molecular components used in their synthesis, the materials have been tailored to hydrogen bond to, and consequently eliminate, specific toxic industrial chemicals, like ammonia.

 

'Metal-organic frameworks (MOFs) have the same customisable characteristics as POPs, and have been investigated for their ability to remove toxic chemicals,' says Nguyen. 'Yet many of the MOFs known today are not very stable, owing to the prevalence of metal-oxygen bonds, and will degrade in the presence of atmospheric moisture. POPs, on the other hand, contain carbon-carbon bonds, which are less susceptible to moisture attack,' he explains.

 

Read more... 

 

Read article in Chemical Communications, "Removal of airborne toxic chemicals by porous organic polymers containing metal-catecholates."

Selective Chlorination of Natural Organic Matter: Identification of Previously Unknown Disinfection Byproducts
Source: Environmental Science & Technology, February 1, 2013
Authors: Elin E. Lavonen, Michael Gonsior, Lars J. Tranvik, Philippe Schmitt-Kopplin, and Stephan J. K�hler

Natural organic matter (NOM) serve as precursors for disinfection byproducts (DBPs) in drinking water production making NOM removal essential in predisinfection treatment processes. We identified molecular formulas of chlorinated DBPs after chlorination and chloramination in four Swedish surface water treatment plants (WTPs) using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chlorine-containing formulas were detected before and after disinfection and were therefore classified to identify DBPs. In total, 499 DBPs were detected, of which 230 have not been reported earlier. The byproducts had, as a group, significantly lower ratio of hydrogen to carbon (H/C) and significantly higher average carbon oxidation state (COS), double bond equivalents per carbon (DBE/C) and ratio of oxygen to carbon (O/C) compared to Cl-containing components present before disinfection and CHO formulas in samples taken both before and after disinfection. Electrophilic substitution, the proposed most significant reaction pathway for chlorination of NOM, results in carbon oxidation and decreased H/C while O/C and DBE/C is left unchanged. Because the identified DBPs had significantly higher DBE/C and O/C than the CHO formulas we concluded that chlorination of NOM during disinfection is selective toward components with relatively high double bond equivalency and number of oxygen atoms per carbon. Furthermore, choice of disinfectant, dose, and predisinfection treatment at the different WTPs resulted in distinct patterns in the occurrence of DBP formulas.

Paraffin Encapsulated in Beach Sand Material as a New Way to Store Heat from the Sun
Source: American Chemical Society, March 13, 2013

The search for sustainable new materials to store heat captured from the sun for release during the night has led scientists to a high-tech combination of paraffin wax and sand. Their report on the heat-storing capability of this microencapsulated sand appears in ACS Sustainable Chemistry & Engineering.

Benxia Li and colleagues explain the need for better materials that can store and release heat. These so-called "phase-change" materials" (PCMs) are essential, for instance, for storing heat from the sun for use in providing energy at night or during cloudy periods. PCMs absorb, store and release heat when changing "phases" from a solid to a liquid and vice versa. They have applications that range from expanding use of solar energy to heat-regulating greenhouses to clothing that keeps soldiers or campers warm on cold nights outdoors. Existing PCMs have disadvantages, such as the tendency to leak or catch fire, and Li's team set out to find a better material.

 

 

Please send a message to mary@turi.org if you would like more information on any of these resources. Also, please tell us what topics you are particularly interested in monitoring, and who else should see Greenlist. An online search of the TURI Library catalog can be done at http://library.turi.org for greater topic coverage.
 
Greenlist Bulletin is compiled by:

Mary Butow 
Research and Reference Specialist
Toxics Use Reduction Institute
University of Massachusetts Lowell
600 Suffolk St., Wannalancit Mills
Lowell MA 01854
978-934-4365
978-934-3050 (fax)
mary@turi.org