|
|
 |
EE TIPS - FREE ARTICLE DOWNLOAD
How-To Guide for Timing Analysis
Although many young engineers have been taught excellent circuit design techniques, most haven't been schooled about the importance of timing analysis. What is timing analysis? Why is timing analysis important? How do you perform timing analysis? Philip Nowe's Circuit Cellar 160 article covers the essentials. Nowe writes:
As a hardware designer and manager, I've noticed that many electrical engineering students are often missing something when they begin their first full-time jobs. They've been taught how to design great circuits, some of them quite complex, but they haven't been taught the importance of timing. What does timing analysis mean? Why is timing analysis important? How is it done? In this article, I answer these questions. In addition, I present you with a real design problem that was solved with timing analysis. So, here we go!
WHY TIMING ANALYSIS? There are a couple of reasons for performing timing analysis. First and foremost, it can be used to verify that a circuit will meet all of its timing requirements. Timing analysis can also help with component selection. An example is when you are trying to determine what memory device speed you should use with a microprocessor. Using a memory device that is too slow may not work in the circuit (or would degrade performance by introducing wait states), and using one that is too fast will likely cost more than it needs to.
|
Figure 1: The simplified digital circuit contains delays in the data and the clock paths.
|
A WORKING DEFINITION Timing analysis is the methodical analysis of a digital circuit to determine if the timing constraints imposed by components or interfaces are met. Typically, this means that you are trying to prove that all set-up, hold, and pulse-width times are being met.
A minimum or maximum digital simulation is not actually the worst-case analysis. That is what a number of entry-level engineers believe. The worst-case analysis takes into account minimum delays through some paths and maximum delays through other paths. For instance, the worst-case set-up timing with respect to flip-flop B in Figure 1 would be the minimum delay to the clock input combined with the maximum delay to the data input of flip-flop B. Continue Reading
|
|  |
 |
|  |
 |
Circuit Cellar #300
July 2015
Innovative Net & Connectivity Projects | DIY Acoustic Android App | MCU-Based WAVE Player | Build a Multi-Node Security System | Sustain Mobile System Performance | Magnetic Shielding Explained | Touch Screen Control Panel Project | LIDAR 101 | What Are Interconnect Defects? | And More
|
|  |
|
|