International Committee on Aeronautical Fatigue and Structural Integrity (ICAF) Conference in Helsinki, Finland
Dr Sharon Mellings from BEASY attended the ICAF conference in Helsinki and presented a paper describing some recent work on the simulation of corrosion and fracture damage.
Airframe structures regularly operate in environments that allow high levels of corrosion damage, and this damage leads to stress concentrations within the structure and potential development of cracks. Even when only a thin film of electrolyte is present on the structure, this can still lead to an electrical field that causes surface damage.
Computation of this electrical field can be used to identify areas in the airframe structure that are most susceptible to corrosion damage and which, after possible fatigue crack initiation, may lead to structural failure. Corrosion simulation can be used to take account of the properties of the electrolyte as well as the structural materials, to determine the rate of material loss from the structure.
Having removed material from the surface (corresponding to corrosion occurring over a given exposure time) the stress concentrations can be evaluated and, if required, cracks can be initiated in each potential problem area, to identify vulnerability to fatigue failure.
The geometry change caused by corrosion mass loss can be used to perform stress analysis of the structure, to determine the stress concentration in the component at the corresponding time in the life of the aircraft. It can then be assumed that cracks initiate at the peak stress locations, and the subsequent crack growth simulated. This crack growth takes into account the corrosion damage and will inherently include local stress concentration due to the damaged surface. In the crack growth simulation, the full crack path and direction is determined along with the fatigue life.
For a copy of the paper, or for more information about corrosion and fracture simulation, please , please contact us
|